\(\int \frac {(a+b \sec (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx\) [642]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 263 \[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\frac {b \left (4 a^2+b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{d \sqrt {a+b \sec (c+d x)}}+\frac {5 a b^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{d \sqrt {a+b \sec (c+d x)}}+\frac {\left (2 a^2-b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {b^2 \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d} \]

[Out]

b*(4*a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(
1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/d/(a+b*sec(d*x+c))^(1/2)+5*a*b^2*(cos(1/2*d*x+1/2*c)^2)^
(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/
2)*sec(d*x+c)^(1/2)/d/(a+b*sec(d*x+c))^(1/2)+(2*a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellip
ticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d
*x+c)^(1/2)+b^2*sin(d*x+c)*sec(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 263, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3927, 4193, 3944, 2886, 2884, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\frac {b \left (4 a^2+b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}+\frac {\left (2 a^2-b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {b^2 \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}+\frac {5 a b^2 \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}} \]

[In]

Int[(a + b*Sec[c + d*x])^(5/2)/Sqrt[Sec[c + d*x]],x]

[Out]

(b*(4*a^2 + b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/
(d*Sqrt[a + b*Sec[c + d*x]]) + (5*a*b^2*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a
 + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + b*Sec[c + d*x]]) + ((2*a^2 - b^2)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]
*Sqrt[a + b*Sec[c + d*x]])/(d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (b^2*Sqrt[Sec[c + d*x]]
*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/d

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3927

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Dist[1/(d*(m + n - 1)),
Int[(a + b*Csc[e + f*x])^(m - 3)*(d*Csc[e + f*x])^n*Simp[a^3*d*(m + n - 1) + a*b^2*d*n + b*(b^2*d*(m + n - 2)
+ 3*a^2*d*(m + n - 1))*Csc[e + f*x] + a*b^2*d*(3*m + 2*n - 4)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e,
 f, n}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 2] &&  !Int
egerQ[m])

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3944

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[d*Sqrt
[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4193

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {b^2 \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d}+\int \frac {\frac {1}{2} a \left (2 a^2-b^2\right )+3 a^2 b \sec (c+d x)+\frac {5}{2} a b^2 \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {b^2 \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{2} \left (5 a b^2\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx+\int \frac {\frac {1}{2} a \left (2 a^2-b^2\right )+3 a^2 b \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {b^2 \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{2} \left (2 a^2-b^2\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{2} \left (b \left (4 a^2+b^2\right )\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {\left (5 a b^2 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{2 \sqrt {a+b \sec (c+d x)}} \\ & = \frac {b^2 \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac {\left (b \left (4 a^2+b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{2 \sqrt {a+b \sec (c+d x)}}+\frac {\left (5 a b^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (2 a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{2 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ & = \frac {5 a b^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{d \sqrt {a+b \sec (c+d x)}}+\frac {b^2 \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac {\left (b \left (4 a^2+b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (2 a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ & = \frac {b \left (4 a^2+b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{d \sqrt {a+b \sec (c+d x)}}+\frac {5 a b^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{d \sqrt {a+b \sec (c+d x)}}+\frac {\left (2 a^2-b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {b^2 \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 5.97 (sec) , antiderivative size = 421, normalized size of antiderivative = 1.60 \[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\frac {(a+b \sec (c+d x))^{5/2} \left (\frac {24 a^2 b \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{(b+a \cos (c+d x))^3}+\frac {2 a \left (2 a^2+9 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{(b+a \cos (c+d x))^3}+\frac {2 i \left (2 a^2-b^2\right ) \sqrt {-\frac {a (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {a (1+\cos (c+d x))}{a-b}} \csc (c+d x) \left (-2 b (a+b) E\left (i \text {arcsinh}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right )|\frac {-a+b}{a+b}\right )+a \left (2 b \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right ),\frac {-a+b}{a+b}\right )+a \operatorname {EllipticPi}\left (1-\frac {a}{b},i \text {arcsinh}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right ),\frac {-a+b}{a+b}\right )\right )\right )}{a \sqrt {\frac {1}{a-b}} b (b+a \cos (c+d x))^{5/2}}+\frac {4 b^2 \tan (c+d x)}{(b+a \cos (c+d x))^2}\right )}{4 d \sec ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[(a + b*Sec[c + d*x])^(5/2)/Sqrt[Sec[c + d*x]],x]

[Out]

((a + b*Sec[c + d*x])^(5/2)*((24*a^2*b*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)
])/(b + a*Cos[c + d*x])^3 + (2*a*(2*a^2 + 9*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2,
 (2*a)/(a + b)])/(b + a*Cos[c + d*x])^3 + ((2*I)*(2*a^2 - b^2)*Sqrt[-((a*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(
a*(1 + Cos[c + d*x]))/(a - b)]*Csc[c + d*x]*(-2*b*(a + b)*EllipticE[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Co
s[c + d*x]]], (-a + b)/(a + b)] + a*(2*b*EllipticF[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a
 + b)/(a + b)] + a*EllipticPi[1 - a/b, I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b
)])))/(a*Sqrt[(a - b)^(-1)]*b*(b + a*Cos[c + d*x])^(5/2)) + (4*b^2*Tan[c + d*x])/(b + a*Cos[c + d*x])^2))/(4*d
*Sec[c + d*x]^(5/2))

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 9.71 (sec) , antiderivative size = 2463, normalized size of antiderivative = 9.37

method result size
default \(\text {Expression too large to display}\) \(2463\)

[In]

int((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d/((a-b)/(a+b))^(1/2)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sec(d*x+c)^(1/2)/(cos(d*x+c)+1)*(4*(1/(cos(d*x
+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*
x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*cos(d*x+c)+2*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*cos(d*x+c)-12*(1/(
cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)
-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*cos(d*x+c)+8*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*cos(d*x+c)-
10*EllipticPi(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(cos(d*x+c)+1)
)^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2-4*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(
d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*cos
(d*x+c)-2*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)
*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)-20*EllipticPi(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-
csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*a*b^2*cos(d*x+c)-6*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2+4*EllipticF(((a-b)/(a+b
))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos
(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^2-10*EllipticPi(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(a+b)/(a-b),I/(
(a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^
2+2*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos
(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2+EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*
x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b^2*cos
(d*x+c)^2+((a-b)/(a+b))^(1/2)*b^3*tan(d*x+c)+4*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*cos(d*x+c)+((a-b)/(a
+b))^(1/2)*a*b^2*sin(d*x+c)-6*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ellipti
cF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b+4*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)
*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(
1/2))*a*b^2+2*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))
^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b+(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/
(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2+2*(1/(
cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)
-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3-2*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1
/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3-(1/(cos(d*x+c)+1))^(1/2)*(
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(
a-b))^(1/2))*b^3+2*((a-b)/(a+b))^(1/2)*a^2*b*sin(d*x+c)+2*((a-b)/(a+b))^(1/2)*a^3*cos(d*x+c)*sin(d*x+c)-2*Elli
pticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^2-EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a
+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)^2+2*
EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x
+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^2)

Fricas [F]

\[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2)*sqrt(b*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((a+b*sec(d*x+c))**(5/2)/sec(d*x+c)**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2)/sqrt(sec(d*x + c)), x)

Giac [F]

\[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2)/sqrt(sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int((a + b/cos(c + d*x))^(5/2)/(1/cos(c + d*x))^(1/2),x)

[Out]

int((a + b/cos(c + d*x))^(5/2)/(1/cos(c + d*x))^(1/2), x)